Точные науки
25,391 Точные науки Бесплатные рефераты: 4,501 - 4,530
-
Задачи по "Логике"
Содержание Задание 1. Дайте полную логическую характеристику понятия Невменяемость ……………… Задание 2. Подберите понятия перекрещивающиеся, подчиненные и подчиняющие понятия, а также соподчиненные и противоречащие данному понятию……………………………………………………………………………. Задание 3. Определите логические отношения между понятиями и выразите их с помощью круговых схем (кругов Эйлера)………………………………… Задание 4. Произведите последовательную многоступенчатую операцию обобщения и
Рейтинг:Слов: 3,330 • Страниц: 14 -
Задачи по "Математике "
Задание №7.12. Дана выборка из генеральной совокупности объема. По выборке необходимо выполнить следующие расчеты. 1. Построить вариационный ряд. 2. Построить группированную выборку с числом интервалов к = 13. 3. Построить гистограмму и полигон частот. 4. По сгруппированной выборке найти точечные оценки математического ожидания и среднеквадратического отклонения. 5. Построить доверительные интервалы
Рейтинг:Слов: 2,022 • Страниц: 9 -
Задачи по "Математике и прикладной математике"
Задача 1 Граф, имеет матрицу смежности . Построить граф. Найти для него матрицу инциденций. Задача 2. 1. В пирамиде SABC: треугольник АВС – основание пирамиды, точка S – ее вершина. Даны координаты точек A, B, C, S. А(4;0;0); В(0;-8;0); C(0;0;2); S(4;6;3). Сделать чертеж. Найти: 1. длину ребра АВ; 2. угол
Рейтинг:Слов: 299 • Страниц: 2 -
Задачи по "Математике"
3.01. Крестьянка продавала на рынке яйца. Первая покупательница купила у нее половину яиц и еще пол-яйца, вторая – половину остатка и еще пол-яйца, а третья последние 10 яиц. Сколько яиц принесла крестьянка на рынок? 10 оставшихся яиц – это половина минус 0,5 яйца от того, что осталось после первой покупательницы,
Рейтинг:Слов: 1,896 • Страниц: 8 -
Задачи по "Математике"
Задача: Зарегистрировано фактов хулиганства в Рязанской области, совершенных лицами в возрасте: Возраст (лет) Число преступлений До 14 20 14-16 63 16-18 76 18-20 89 20-22 64 22-24 47 24 и старше 72 Вычислите: средний возраст преступников, моду и медиану. Поясните значения полученных показателей Решение: Для сгруппированных данных среднее значение признака
Рейтинг:Слов: 257 • Страниц: 2 -
Задачи по "Математике"
У=с1+с2ех Мұндағы с1=с1(х), с2=с2(х) деп алып, бсрілген теңдеудің дербес шешімін мынадай түрде іздейміз: у = с1(х)+с(х)ех Белгісіз с1(х). С2(х) функцияларын төмендегі теңдеулер жүйесінен ==> ==> , Табылған с1(х), с2(х) мәндерін ізделінді шешімге қоямыз. Сонда у = ( –тұрақты шамалар). Бұл функция берілген теңдеудің жалпы шешімі болып табылады. 19 - мысал.
Рейтинг:Слов: 522 • Страниц: 3 -
Задачи по "Математике"
1. Найти Решение Функция f(t) = sh t – непрерывна, поэтому воспользуемся теоремой: Если f(x) – непрерывная, φ(x), ψ(x) – дифференцируемые функции, то производная от интеграла по переменной x равна: В нашем случае Пользуясь формулой, получим: ________________ 2. Найти точки экстремума функции Решение Точки экстремума – это точки, в которых
Рейтинг:Слов: 369 • Страниц: 2 -
Задачи по "Математике"
1. Выполнить действия: Решение: 1. =1+2i+2i+4i2=1+4i+4i2 2. =1+i2-i-i3 3. (1+4i+4i2)-( 1+i2-i-i3)=5i+3i2+i3 4. =27+12i2+18i+8i3 5. =4+4i+i2 6. (27+12i2+18i+8i3)-( 4+4i+i2)=23+14i+11i2 7. (5i+3i2+i3)/ 23+14i+11i2=i(5+3i+i2)/23+14i+11i2 2.Даны комплексные числа: Z1=cos+isin Z2= cos+isin Z3= cos+isin Вычислить: ;z1*z3; z23 Решение: 1)= (cos+isin)/ (cos+isin)= cos(-)+isin-)= cos+isin 2) z1*z3= (cos+isin)*( cos+isin)= cos(+)+isin+)= = cos+isin= cos+isin 3) z23 =( cos+isin)3=
Рейтинг:Слов: 344 • Страниц: 2 -
Задачи по "Математике"
Вариант 2 * В задачах 1 - 10 дані вершини трикутника . 1. Знайти: рівняння висоти та її довжину, 2. (-2,3) (1,-2) (2,3) * В задачах 11-20 систему рівнянь розв'язати методами Крамера, Гауса, записати в матричній формі та розв'язати 'її за допомогою оберненої матриці. 12. x1 + x2 + x3
Рейтинг:Слов: 264 • Страниц: 2 -
Задачи по "Математике"
Упражнение №1. Чему равен результат выражения (1110)2 – (11)2 в десятичной системе счисления? А) 11; Б) 10; В) 15; Г) 13. Ответ: (1110)2=1*23+1*22+1*21+1*20 =8+4+2+1=14 (11)2 =1*21+1*20 =2+1=3 14-3=11 Ответ:А Упражнение №2. Чему равен результат выражения (1010)2 + (101)2 в десятичной системе счисления? А) 11; Б) 10; В) 15; Г) 13.
Рейтинг:Слов: 618 • Страниц: 3 -
Задачи по "Математике"
Задача 8. . Решение: Способ № 1: метод левых прямоугольников. Отрезок разбивается на равных частей: длиной , где . Метод правых прямоугольников. . Способ № 2: метод трапеций. В этом методе суммируются площади трапеций, а не прямоугольников: , где Способ № 3: метод парабол. В этой ситуации отрезок разбивается на
Рейтинг:Слов: 556 • Страниц: 3 -
Задачи по "Математике"
Содержание С. Задание 2 3 Задание 12 4 Задание 22 6 Задание 32 7 Задание 42 8 Задание 52 9 Список использованной литературы 11 ________________ Задание 2 Выполнить действия над матрицами: Решение Компоненты матрицы С вычисляются следующим образом: C11 = A11 · B11 + A12 · B21 = 1 ·
Рейтинг:Слов: 982 • Страниц: 4 -
Задачи по "Математике"
1. Ізделінген санды 2,5 есе арттырып, одан ізделінді санның жартысын шегерген кезде, ізделінді саннан 1,99 –ға артық болатындай сан шықты. Ізделінді санды табыңыз. x – ізделінді сан 1. Жүзім кептірілген кезде өзінің массасының 65%-ын жоғалтады. 40 кг таза жүзімнен қанша килограмм кептірілген жүзім алуға болады? 1. Тік төртбұрыштың периметрі 20см,
Рейтинг:Слов: 304 • Страниц: 2 -
Задачи по "Математике"
1. Найти общий множитель многочлена и выделить его. 2. Вынесите его за скобки. Примеры. 1) 5х + 5у = 5(х + у). 2) 7b - 49 = 7b - 7 7 = 7(b - 7). 3) 6a - 3 = 32a - 31 = 3(2a - 1). 4) 28b2c
Рейтинг:Слов: 464 • Страниц: 2 -
Задачи по "Математике"
Задача№1. Дано: Решение: Δр=4,7*104 Па ΔV=== 176,25*10-5 м3 V=75 м3 Найти: Ответ: ΔV=? ΔV=176,25*10-5 м3 Задача№2. Дано: Решение: Δt=300С Вt= ΔV=Вt Вt=0,00060С(-1) V=0,8 м3 ΔV=0,00060С(-1)*300С*0,8=0,0144м3 Найти: Ответ: ΔV=? ΔV=0,0144м3 Задача№3. Дано: Решение: V=60 м3 βt= ΔV=Вt t1=200С t2=600С ΔV=0,00060С(-1)*200С*60=0,72м3 βt=0,00060С(-1) V1=ΔV+V V1=0,72+60=60,72м3 Найти: Ответ: V1=? V1=60,72м3 Задача№4. Дано: Решение: V=0,5м3
Рейтинг:Слов: 1,633 • Страниц: 7 -
Задачи по "Математике"
Дано: a = 0.2 Эрл V = 7 A = aV = 1.4 Решение: 1) Распределение Бернулли: P0 = (1 - a)V = (1 – 0.2)7 = 0.2097 Pi+1 = Pi = 0.2097 = 0.3669 P2 = 0.3669 = 0.2751 P3 = 0.2751 = 0.1146 P4 = 0.1146 = 0.0286
Рейтинг:Слов: 347 • Страниц: 2 -
Задачи по "Математике"
Кунщикова Кристина, 8 вариант, ЛБ-513 Задача 2 I Постановка задачи Каждому элементу матрицы D присвоить значение равное величине h, умноженной на значение индекса строки, в которой расположен элемент. II Математическая модель задачи D III Разработка алгоритма h, IV Разработка визуальной части проекта C:\Users\Алёна\Desktop\CCCCCC.png V Код приложения Option Base 1 Private
Рейтинг:Слов: 366 • Страниц: 2 -
Задачи по "Математике"
ИДЗ 6.4 – Вариант 19 1. Решить следующие задачи 1.19 Из всех конусов с данной боковой поверхностью S найти тот, у которого объем наибольший. Решение: Объем конуса Площадь боковой поверхности конуса вычисляется по формуле: Длина образующей Тогда площадь боковой поверхности Найдем из полученной формулы высоту h: (1) Выражение высоты h
Рейтинг:Слов: 855 • Страниц: 4 -
Задачи по "Математике"
Задача. Вариант 8 Период 1 2 3 4 5 6 Объем продаж, т.р. 34 31 29,9 43 28 35 Цена единицы продукции, т.р. 2 2,6 3,5 3,8 4 4,2 Image 1. Составим модель для определения цены продукции 1. Х = а + bt 2. B = 3. A = Image
Рейтинг:Слов: 333 • Страниц: 2 -
Задачи по "Математике"
Вариант 2. Задание 1. Вычислить пределы функций а) ; б) ; в) C:\Users\Юрий\AppData\Local\Microsoft\Windows\INetCache\Content.Word\K28ODY7c7wU.JPG Задание 2. Найти производные функций а) , б) , в) , г) C:\Users\Юрий\AppData\Local\Microsoft\Windows\INetCache\Content.Word\oko7WraXB4g.jpg C:\Users\Юрий\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Zv0b3tHX78U.JPG Задание 3. Исследовать функцию методами дифференциального исчисления и построить ее график. MW0SKoHrGrU 3) Асимптоты функции Находим коэффициент k: Находим коэффициент b: Получаем уравнение
Рейтинг:Слов: 278 • Страниц: 2 -
Задачи по "Математике"
Задание 1. Решение Воспользуемся решением следующей задачи (решебник Гмурмана): В нашем случае р = 0.1, q = 0.9. Закон распределения будет иметь вид: X 1 2 3 4 … P 0.1 0.09 0.081 0.0729 … Задание 2. Решение Формулы для плотности распределения и функции распределения имеют вид , Математическое ожидание
Рейтинг:Слов: 856 • Страниц: 4 -
Задачи по "Математике"
Задание 2. Дана матрица игры 1. Проверить наличие седловой точки; 2. Упростить матрицу игры с помощью геометрических построений; 3. Найти решение игры. Решение: 1) Проверим наличие седловой точки. Найдем наилучшую стратегию первого игрока: минимальное число в каждой строке обозначим . Получаем: , , , . Выберем максимальное из этих значений
Рейтинг:Слов: 1,057 • Страниц: 5 -
Задачи по "Математике"
Задача(1)Нахождение среднего арифметического: В лесу по пятницам бабушка собирала по 12 литров голубики, по субботам - на 3 литра меньше, а по воскресеньям - в 2 раза меньше, чем по пятницам. По сколько литров голубики в день в среднем собирала бабушка? Решение: 1)12-3=9 (л.) - голубики собирала бабушка по субботам
Рейтинг:Слов: 294 • Страниц: 2 -
Задачи по "Математике"
Задача 1. Отдел менеджмента одного из предприятий разрабатывает новую стратегию выпуска продукции. Известно, что при определенном технологическом процессе в среднем 77% всей продукции предприятия – высшего сорта, а всего производится 212 изделий. Стратегия, разработанная отделом менеджмента, основана на том, что предприятие будет рентабельным, если выпуск продукции высшего сорта будет составлять
Рейтинг:Слов: 672 • Страниц: 3 -
Задачи по "Математике"
- в точке функция терпит разрыв - в точке функция непрерывна - в точке функция непрерывна - в точке функция терпит разрыв Нулями этого уравнения являются , , Проверяем справедливость теоремы Ролля: Точка лежит в интервале ни при каких значениях аргумента. Тогда наименьшее и наибольшее значения функция принимает на концах
Рейтинг:Слов: 552 • Страниц: 3 -
Задачи по "Математике"
1. Студент знает 32 из 35 вопросов программы. Зачет считается сданным, если студент ответил не менее чем на три вопроса из 4 поставленных. Какова вероятность того, что студент сдаст зачет? Решение: События А – «студент сдаст зачёт» В – «студент ответил на 3 вопроса из четырёх» С – «студент ответил
Рейтинг:Слов: 437 • Страниц: 2 -
Задачи по "Математике"
Вариант 23 f(x)=cos(x^2-1)- √(x^3 )+5 df/dx(x_n ) =[f(x_n )-f(x_(n-1) )]×1/(x_n-x_(n-1) ) x_(n+1)=x_n- (x_n-x_(n-1))/(f(x_n )-f(x_(n-1) ) ) f(x_n) Находим вторую производную: (d^2 F)/(dx^2 )=-(4x^2 cos(x^2-1)+2 sin(x^2-1)+3√(x^3 ))/4x^2 интервал [2.8, 3.4] разобьем на 10 подынтервалов. h 1 = 2.8 + 1×(3.4 – 2.8)/10 =2.86 h 2 = 2.8 + (1+1) ×(3.4 –
Рейтинг:Слов: 369 • Страниц: 2 -
Задачи по "Математике"
№51 Решение: Область непрерывности данного уравнения . Перенесем в правую часть. Разделим переменные. Для этого разделим обе части уравнения на выражение Проинтегрируем обе части Решим интеграл Представим произвольную константу в виде и воспользуемся свойствами логарифма Вновь пере обозначим константу . Тогда общее решение запишем в виде , Сделаем проверку, вызванную
Рейтинг:Слов: 424 • Страниц: 2 -
Задачи по "Математике"
Задача: сложить 2+2 правильно, чтобы получить 4 в значении, используя лишь одно действие. Выполнение работы требует наличие смекалки, а также базовых знаний в математики - сложении. Решение: 2+2 = 4 Проверка: 4-2=2 При получении исходного значения мы убедились, что решение верное. В результате мы доказали, что 2 плюс 2 равно
Рейтинг:Слов: 269 • Страниц: 2 -
Задачи по "Математике"
Задание 1. Вариант 7. Решение системы линейных алгебраических уравнений (СЛАУ) методом обратной матрицы с проверкой правильности расчетов Вариант 7. Решение: Запишем систему в матричном виде: AX=B; X=A-1B; Найдем обратную матрицу A-1 , где Aij – алгебраическое дополнение к элементам матрицы. Найдем определитель матрицы - . Определитель матрицы отличен от 0,
Рейтинг:Слов: 4,012 • Страниц: 17