Essays.club - Получите бесплатные рефераты, курсовые работы и научные статьи
Поиск

Основы линейной регрессии в «Statistica»

Автор:   •  Февраль 9, 2019  •  Лабораторная работа  •  780 Слов (4 Страниц)  •  427 Просмотры

Страница 1 из 4

ЛАБОРАТОРНАЯ РАБОТА №2

«Основы линейной регрессии в «Statistica»

Цель работы: Изучение параметров парной линейной регрессии в программе «Statistica».

1. Теоретический обзор

Линейная регрессия нашла широкое применение в эконометрических задачах ввиду четкой экономической интерпретации ее параметров. Линейная регрессия сводится к нахождению уравнения вида y=a+b·x, которое позволяет по заданным значениям фактора x иметь теоретические значения результативного показателя подстановкой в него фактических значений фактора.

Построение линейной регрессии сводится к оценке ее параметров – a и b. Оценки параметров линейной регрессии могут быть найдены разными методами. Можно обратиться к полю корреляции и, выбрав на графике две точки, провести через них прямую линию, а затем по графику найти значения параметров. Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК). Параметр b называется коэффициентом регрессии. Его величина показывает среднее изменение результата с изменением фактора на одну единицу. Знак при коэффициенте регрессии b показывает направление связи: при b>0 - связь прямая, а при b<0 - - связь обратная.

Для параметра а интерпретировать можно лишь знак при параметре.

Если a<0, то относительное изменение зависимой переменной происходит медленнее, чем изменение фактора.
Уравнение регрессии всегда дополняется показателем тесноты связи. При использовании линейной регрессии в качестве такого показателя выступает линейный коэффициент корреляции r
xy. Парный коэффициент корреляции определяется выражением:

[pic 1]

где , i σx, σy – среднеквадратическое отклонение фактора x и показателя y, которые определяются средними значениями фактора и показателя.

Интерпретация коэффициента корреляции осуществляется с помощью шкалы Чеддока:

  • [pic 2] связь весьма высокая положительная;
  • [pic 3] связь высокая положительная;
  • [pic 4] связь заметная положительная;
  • [pic 5] связь умеренная положительная;
    [pic 6] связь слабая положительная;
  • [pic 7] связь слабая отрицательная;
  • [pic 8] связь умеренная отрицательная;
  • [pic 9] связь заметная отрицательная;
  • [pic 10] связь высокая отрицательная;
  • [pic 11] связь весьма высокая отрицательная;
  • [pic 12] связь отсутствует;

[pic 13],[pic 14]- связь функциональная.

Следует иметь в виду, что величина линейного коэффициента корреляции оценивает тесноту связи рассматриваемых признаков в ее линейной форме. Поэтому близость абсолютной величины линейного коэффициента корреляции к нулю еще не означает отсутствия связи между признаками. При иной спецификации модели связь между признаками может оказаться достаточно тесной.

Задание к лабораторной работе
1) Постройте диаграмму рассеяния зависимости показателя Y от переменной X1. Проанализируйте ее. (Рис. 1).

...

Скачать:   txt (9.5 Kb)   pdf (865.2 Kb)   docx (711.2 Kb)  
Продолжить читать еще 3 страниц(ы) »
Доступно только на Essays.club