Essays.club - Получите бесплатные рефераты, курсовые работы и научные статьи
Поиск

Игры с природой

Автор:   •  Май 10, 2022  •  Практическая работа  •  1,848 Слов (8 Страниц)  •  246 Просмотры

Страница 1 из 8

Содержание

Лист задания        2

Введение        3

1 Краткие теоретические сведения        4

2        Результаты выполнения заданий        7

Заключение        14

Лист задания

Выбрать оптимальный набор компьютеров для новой системы ЭВМ, которая может состоять из четырех типов ЭВМ – А1, А2, А3 и А4. При использовании ЭВМ типов А1, А2, А3 и А4 в зависимости от характера решаемых задач В1, В2 , В3 и В4 будет разный эффект. Выигрыши от внедрения каждого типа ЭВМ, с учетом затрат на внедрение каждого типа, заданы в таблице по вариантам. Найти оптимальный состав новой системы. Задачу решить следующими способами:

  1. считая природу мыслящим игроком (найти решение в смешанных стратегиях);
  2. применяя критерии для игры с природой в условиях полной неопределенности.
  3. применяя байесовский подход;
  4. считая, что был проведен статистический эксперимент по уточнению состояний природы, задать условное распределение вероятностей, ввести решающие функции и свести задачу к решению игры в смешанных стратегиях.

Таблица 1 – Матрица выигрышей

В1

В2

В3

В4

А1

11

3

5

29

А2

4

2

6

3

А3

6

16

14

6

А4

15

8

17

5


Введение

Математическая теория игр является современным разделом теории принятия решений, имеющим разнообразные приложения в социально-экономических, политических и организационных процессах.

Актуальность обусловлена тем, что математическая теория игр позволяет различным экономическим субъектам (поставщикам, руководителям организаций, конкурентам и т.д.) принимать оптимальные стратегические решения в условиях неопределенности, связанной с поведением игроков на конкурентном рынке. Руководители компаний должны помнить: если они вовремя не совершат нужный шаг, это сделают их соперники. Многие проблемы олигополистической стратегии – установление товарных цен, управление производственными мощностями, проведение маркетинговой политики, выход на новые рынки, выставление тендерных заявок и составление контрактов – можно представить в виде простых, поддающихся количественному определению игровых моделей.

Цель работы: закрепление теоретических знаний, выработка практических навыков принятия решения в условиях неопределённости и в условии риска.

Объект – стратегические игры.

Предмет – игры с природой.

Задачи:

  1. найти решение игры в смешанных стратегиях;
  2. найти решение игры с природой в условиях полной неопределенности.
  3. найти решение игры с природой в условиях риска;
  4. найти решение игры с природой в условиях проведения статистического эксперимента по уточнению состояний природы.


1 Краткие теоретические сведения

1) Решение игры в смешанных стратегиях

Если в матричной игре отсутствует седловая точка в чистых стратегиях, тогда ищут смешанные стратегии первого и второго игроков, которые приводят к равенству среднего «выигрыша» первого игрока и среднего «проигрыша» второго игрока.

  Применяются следующие обозначения смешанных стратегий.

  Для игрока 1: смешанная стратегия, заключающаяся в применении чистых стратегий А1, А2,..., Аm с соответствующими вероятностями р1, р2, ..., рm,

[pic 1]

где  .[pic 2]

Для игрока 2:

[pic 3]

где .[pic 4]

qj – вероятность применения стратегии Вj.

Существует основная теорема стратегических игр с нулевой суммой.

Теорема. Для матричной игры m*n с любой матрицей A выполняется условие:  

               (1)[pic 5]

Чистые стратегии игрока являются единственно возможными несовместными событиями. В матричной игре, зная матрицу А, можно определить при заданных векторах p и q средний выигрыш игрока 1:

...

Скачать:   txt (33.4 Kb)   pdf (430.8 Kb)   docx (809.4 Kb)  
Продолжить читать еще 7 страниц(ы) »
Доступно только на Essays.club