Ең аз үйлесімсіздіктер әдісі
Автор: Алия Арап • Октябрь 1, 2021 • Эссе • 577 Слов (3 Страниц) • 390 Просмотры
Қазақстан Республикасы білім және ғылым министрлігі
Әл - Фараби атындағы Қазақ Ұлттық Университеті
[pic 1]
Факультеті «Механика-Математика»
Кафедрасы «Математикалық және компьютерлік модельдеу»
Мамандығы «Математикалық және компьютерлік модельдеу»
СӨЖ
Тақырыбы: Ең аз үйлесімсіздіктер әдісі
Орындаған:Арап Ә.С. МКМ 20-1
Тексерген:Байтуленов Ж.Б.
Алматы, 2021ж
Ең аз үйлесімсіздіктер әдісі
Ең аз үйлесімсіздіктер әдісі -сызықтық теңдеулердің асимметриялық жүйесін сандық шешудің итерациялық әдісі. Бұл әдіс шешімді Крыловтың ішкі кеңістігіндегі вектормен минималды тұтқырлықпен жақындатады. Бұл векторды табу үшін Арнольди итерациясы қолданылады.
Алғаш рет ең аз үйлесімсіздіктер әдісі Марчук пен Кузнецовтың "итерациялық әдістер мен квадраттық функционалдар" кітабында сипатталған және ең аз үйлесімсіздіктер әдісінің геометриялық орындалуы болды.
1986 жылы сад пен Шульц ұсынған ең аз үйлесімсіздіктер әдісін алгебралық енгізу ұсынылды. Олардың берілуімен GMRES аббревиатурасы (минималды қалдықтардың жалпыланған әдісі) әдіске бекітілді.
Алгоритмнің математикалық сипаттамасы
Ax=b жүйесін A дегенеративті емес матрицамен шешу үшін x0 бастапқы жуықтау таңдалады, содан кейін қысқартылған Au=r0 жүйесі шешіледі,мұнда r0=b−Ax0, x=x0+u. Крыловтың ішкі кеңістігі қысқартылған жүйе үшін құрылады (r0≠0 деген болжаммен).
xi=x0+y болсын, мұндағы y Ki. Үйлесімсіздік ri=r0−Ay түрінде болады, ал оның ұзындығы Пифагор теоремасына байланысты минималды, тек[pic 2]
...