Расчет переходного процесса в цепи второго порядка
Автор: telemeg • Декабрь 7, 2019 • Контрольная работа • 488 Слов (2 Страниц) • 522 Просмотры
Задание №2
ПЕРЕХОДНЫЕ ПРОЦЕССЫ
Ключ коммутируется из положения 1 в положение 2. До коммутации в схеме существовал установившийся процесс. Рассчитать:
А) [pic 1] классическим методом,
Б) [pic 2] операторным методом,
В) [pic 3]; [pic 4] по изображению, рассчитанному в пункте Б,
Г) [pic 5] по изображению, рассчитанному в пункте Б.
Вар. | [pic 6], В | [pic 7], мГн | [pic 8], мкФ | [pic 9], Ом | [pic 10], Ом |
22 | 100 | 118 | [pic 11] | 50 | 100 |
[pic 12]
Решение:
А) Классический метод.
Определим переходное напряжение на конденсаторе, через это напряжение вычислим искомый ток [pic 13].
Рассмотрим схему до коммутации:
[pic 14] А;
[pic 15]; [pic 16];
[pic 17] В;
Определим корни характеристического уравнения для схемы после коммутации:
[pic 18]
[pic 19]
[pic 20]
[pic 21]
[pic 22]
Подставив числовые значения, получаем:
[pic 23]
Решая квадратное уравнение, получаем корни:
[pic 24] с-1;
[pic 25] с-1;
Корни получились действительные и разные т.е. переходный процесс апериодический.
Свободная составляющая искомого напряжения [pic 26]:
[pic 27], где [pic 28], [pic 29] - постоянные интегрирования.
Рассчитаем установившийся режим после коммутации:
[pic 30] А;
[pic 31] В;
По законам Кирхгофа для момента времени [pic 32]:
[pic 33];
[pic 34];
По законам коммутации: [pic 35]; [pic 36];
[pic 37] А;
[pic 38];
[pic 39];
Определим постоянные интегрирования:
[pic 40];
[pic 41]
Для момента времени [pic 42]:
[pic 43];
[pic 44];
Подставляем числовые значения:
[pic 45];
[pic 46];
[pic 47];
[pic 48];
[pic 49];
[pic 50]; [pic 51];
Тогда получаем напряжение на конденсаторе:
[pic 52];
Искомый ток через конденсатор определим через производную:
...