Essays.club - Получите бесплатные рефераты, курсовые работы и научные статьи
Поиск

Практична робота з «Комп’ютерний зір»

Автор:   •  Декабрь 15, 2022  •  Практическая работа  •  1,452 Слов (6 Страниц)  •  168 Просмотры

Страница 1 из 6

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ХАРКІВСЬКИЙ

ХАРКІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ РАДІОЕЛЕКТРОНІКИ

Кафедра ІУС

Практична робота №1

з дисципліни «Комп’ютерний зір»

Виконала:

Студентка групи ІУСТ-зм-22-1

Зобова А.М.

Перевірив:

Викладач: В.П. Машталір

Харків, 2022

Код:


import matplotlib.pyplot as plt
import numpy as np
from skimage import img_as_ubyte, data
from skimage.draw import line, circle_perimeter
from skimage.color import rgb2gray
from skimage.feature import canny
from skimage.transform import hough_line, hough_line_peaks, hough_circle, hough_circle_peaks, \
   probabilistic_hough_line
from skimage.util import random_noise


class ImageTransform:
   
def __init__(self, image=None, param_1: float = 1, param_2: float = 1, param_3: float = 1, image_cols=6):
       
self.image = self.create_image(image)
       
self.canny_image = self.to_canny(param_1, param_2, param_3)
       
self.noise_image = self.add_noise(self.image)
       
self.noise_image_2d = self.add_noise(rgb2gray(self.image))
       
self.canny_after_noise = self.to_canny(param_1, param_2, param_3, self.noise_image)
       fig, axes = plt.subplots(
1, image_cols, figsize=(22, 10))
       
self.fig = fig
       
self.ax = axes.ravel()

   
@staticmethod
   
def create_image(image):
       
pass

   def
to_canny(self, param_1: float, param_2: float, param_3: float, img=None):
       
if img is None:
           img =
self.image
       
if len(img.shape) >= 3:
           
if img.shape[2] == 3:
               img = rgb2gray(img)
       
return canny(img, param_1, param_2, param_3)

   
def highlight(self, image=None):
       
pass

   def
add_noise(self, image):
       
if image is None:
           image =
self.image
       
return random_noise(image)

   
def compare(self):
       
pass


class
ImageLinesTransform(ImageTransform):

   
def __init__(self, image=None, param_1: float = 1, param_2: float = 1, param_3: float = 1, image_cols=8):
       
super().__init__(image, param_1, param_2, param_3, image_cols)

   
def create_image(self, image):
       
if image is None:
           image = np.zeros((
200, 200, 3))
           idx = np.arange(
25, 175)
           image[idx, idx] =
255
           
image[line(45, 25, 25, 175)] = 255
           
image[line(25, 135, 175, 155)] = 255

       
else:
           image = plt.imread(image)

       
return image

   
def highlight(self, image=None):

       
if image is None:
           image = rgb2gray(
self.image)
           nums = (
2, 3)
           params = (
2, 0.55, 0.8)

       
else:
           nums = (
6, 7)
           params = (
1, 1, 1)

       tested_angles = np.linspace(-np.pi /
2, np.pi / 2, 360, endpoint=False)
       hspace, theta, dist = hough_line(
self.to_canny(*params, image), theta=tested_angles)

       img = np.zeros(
self.image.shape, dtype=np.uint8)
       
self.ax[nums[0]].imshow(img, cmap=plt.cm.gray)
       
self.ax[nums[0]].set_ylim((img.shape[0], 0))
       
self.ax[nums[0]].set_axis_off()
       
self.ax[nums[0]].set_title('Detected lines')

       
for _, angle, dist in zip(*hough_line_peaks(hspace, theta, dist)):
           (x0, y0) = dist * np.array([np.cos(angle), np.sin(angle)])
           
self.ax[nums[0]].axline((x0, y0), slope=np.tan(angle + np.pi / 2))

       lines = probabilistic_hough_line(
self.to_canny(1, 1, 1, image), threshold=10, line_length=5,
                                       
line_gap=3)

       
self.ax[nums[1]].imshow(self.to_canny(1, 1, 1, image) * 0)
       
for line in lines:
           p0, p1 = line
           
self.ax[nums[1]].plot((p0[0], p1[0]), (p0[1], p1[1]))
       
self.ax[nums[1]].set_xlim((0, image.shape[1]))
       
self.ax[nums[1]].set_ylim((image.shape[0], 0))
       
self.ax[nums[1]].set_title('Probabilistic Hough')

       
for a in self.ax:
           a.set_axis_off()

   
def compare(self):
       
self.ax[0].imshow(self.image / 255)
       
self.ax[0].set_title("Original")
       
self.ax[1].imshow(self.canny_image, cmap=plt.cm.gray)
       
self.ax[1].set_title("Canny")
       
self.highlight()
       
self.ax[4].imshow(self.noise_image, cmap=plt.cm.gray)
       
self.ax[4].set_title("With noise")
       
self.ax[5].imshow(self.canny_after_noise, cmap=plt.cm.gray)
       
self.ax[5].set_title("Canny with noise")
       
self.highlight(self.noise_image_2d)
       
self.fig.tight_layout()
       plt.show()


class ImageCircleTransform(ImageTransform):

   
def __init__(self, image=None, param_1: float = 1, param_2: float = 1,
                param_3:
float = 1, image_cols=6, circles_num=1):
       
super().__init__(image, param_1, param_2, param_3, image_cols)
       
self.circles_num = circles_num

   
def create_image(self, image):
       
if image is None:
           image = np.zeros((
250, 250, 3), dtype=np.uint8)
           image[circle_perimeter(
60, 60, 50)] = 255
           
image[circle_perimeter(150, 150, 60)] = 255
       
else:
           image = plt.imread(image)

       
return image

   
def highlight(self, image=None):

       
if image is None:
           image = rgb2gray(
self.image)
           nums = (
2,)

       
else:
           nums = (
5,)

       
# Detect two radii
       
hough_radii = np.arange(50, 80, 5)

       image = img_as_ubyte(image)

       edges = canny(image,
sigma=2.0, low_threshold=0.55, high_threshold=0.8)

       hough_res = hough_circle(edges, hough_radii)

       
# Select the most prominent circles
       
accums, cx, cy, radii = hough_circle_peaks(hough_res, hough_radii, total_num_peaks=self.circles_num,
                                                 
min_xdistance=50, min_ydistance=50)
       image = np.zeros((
self.image.shape[0], self.image.shape[1], 3), dtype=np.uint8)
       
# Draw them
       
for center_y, center_x, radius in zip(cy, cx, radii):
           circy, circx = circle_perimeter(center_y, center_x, radius)
           image[circy, circx] = (
220, 20, 20)

       
self.ax[nums[0]].imshow(image, cmap=plt.cm.gray)

   
def compare(self):
       
self.ax[0].imshow(self.image / 255)
       
self.ax[0].set_title("Original")
       
self.ax[1].imshow(self.canny_image, cmap=plt.cm.gray)
       
self.ax[1].set_title("Canny")
       
self.highlight()
       
self.ax[3].imshow(self.noise_image, cmap=plt.cm.gray)
       
self.ax[3].set_title("With noise")
       
self.ax[4].imshow(self.canny_after_noise, cmap=plt.cm.gray)
       
self.ax[4].set_title("Canny with noise")
       
self.highlight(self.noise_image_2d)
       
self.fig.tight_layout()
       plt.show()


line_image = ImageLinesTransform(
image_cols=8)
line_image.compare()

circle_image = ImageCircleTransform(
circles_num=2)
circle_image.compare()

col_image = ImageLinesTransform(
image='img.jpg')
col_image.compare()

col_image2 = ImageCircleTransform(
image='boll.jpg', circles_num=4)
col_image2.compare()

...

Скачать:   txt (7.3 Kb)   pdf (1 Mb)   docx (895.8 Kb)  
Продолжить читать еще 5 страниц(ы) »
Доступно только на Essays.club