Визначення швидкості і прискорення точки за заданними параметрами
Автор: Анастасия Синицына • Октябрь 21, 2021 • Лабораторная работа • 385 Слов (2 Страниц) • 314 Просмотры
Задача К1
Визначення швидкості і прискорення точки за заданними параметрами
Варіант 17
Дано:
[pic 1]
t=1.1c
Знайти: y=y(x), x(t), y(t), v(t), w(t), (t), (t), .[pic 2][pic 3][pic 4]
Р о з в ’ я з а н н я
- x(t)=4t+4 t = ; тоді y = = - [pic 8][pic 5][pic 6][pic 7]
Вираз є рівнянням гіперболи.
- Визначемо координати точки М:
хм=4*1.1+4=8.4(см)
ум= -= -1.9(см)[pic 9]
- Для визначення швидкості точки знаходимо проекції швидкості на осі координат:
vx==4(см/с)[pic 10]
vy== (см/1), якщо t=1.1c, то vy=0,9(см/с)[pic 11][pic 12]
- Модуль швидкості точки:
= = =4.1(cм/с)[pic 13][pic 14][pic 15]
- Аналогічно проекції прискорення точки M:
==0[pic 16][pic 17]
== - ; Якщо t=1.1c, то = - = -0.86(см/с2)[pic 18][pic 19][pic 20][pic 21][pic 22]
- Модуль прискорення:
= =2 =0.86(cм/с2)[pic 23][pic 24][pic 25]
- Дотичне прискорення:
= = = -0.19(cм/с2)[pic 26][pic 27][pic 28]
Від'ємне значення означає, що рух точки сповільнений, а тому тангенціальне прискорення напрямлене проти вектора швидкості.
- Нормальне прискорення точки:
Wn==2 = 0,83(cм/с2)[pic 29][pic 30]
- Радіус кривизни траєкторії:
=== 20.3(cм)[pic 31][pic 32][pic 33]
Отримані значення розрахунків подані в таблиці 1.
Таблиця 1
Координати, см | Швидкість, см/с | Прискорення, см/с2 | Радіус кривизни, см | |||||||
x | y | Vx | Vy | V | Wx | Wy | W | [pic 34] | Wn | [pic 35] |
8,4 | -1,9 | 4 | 0,9 | 4,1 | 0 | -0,86 | 0,86 | -0,19 | 0,83 | 20,3 |
...