Essays.club - Получите бесплатные рефераты, курсовые работы и научные статьи
Поиск

Контрольная работа по "Математическому анализу"

Автор:   •  Май 31, 2021  •  Контрольная работа  •  4,673 Слов (19 Страниц)  •  233 Просмотры

Страница 1 из 19

[pic 1]

Вариант 1

Задание 1. Найти общее решение уравнения:

а) ysin x  y ln y cos x = 0,

б) (xy2  y2 )dx  (x2 y + x2 )dy = 0,

в) (xy + y2 ) dx  (2x2 + xy)dy = 0,

г) y  y ctg x =        1        .

sin x

Решение. а) Данное уравнение является уравнением с разделяющимися переменны-[pic 2]

ми. Учитывая, что


y = dy , перепишем данное уравнение в следующем виде

dx[pic 3]

Разделяя переменные, получим


dy sin x = y ln y cos x .

dx[pic 4]

Интегрируя обе части равенства:


dy y ln y


= cos x dx .

sin x[pic 5][pic 6]

   dy   = ln | ln y | +C,[pic 7]

y ln y


cos x dx =   ctg xdx =ln | sin x | +C ,

sin x[pic 8]

получим (заметим, что константа интегрирования будет присутствовать только один раз и будет взята в виде lnC):

ln | ln y |= ln | sin x | + ln C                ln y = C sin x .

Это есть общий интеграл данного дифференциального уравнения.

б) Данное уравнение является уравнением с разделяющимися переменными. Разделяя переменные, получим:

(x 1) y2dx  x2 ( y +1)dy = 0                x 1 dx  y +1 dy = 0 .[pic 9][pic 10]

x2        y2

Интегрируя обе части равенства:

x 1 dx =

[pic 11]


 1  1  dx = ln x + 1 + C,

[pic 12] [pic 13]        [pic 14]


y +1 dy =

[pic 15]


 1 + 1  dy = ln y  1 + C.

[pic 16][pic 17][pic 18]

 x2


 x        x2


x         y2


 y        y2         y

                        [pic 19][pic 20][pic 21][pic 22]

находим общий интеграл исходного дифференциального уравнения:

ln x + 1 + ln[pic 23][pic 24][pic 25]

x


y  1 = C .

y[pic 26][pic 27][pic 28]

Отметим, что при делении мы могли потерять какое-либо решение. Действительно, как показывает проверка, решения x=0 и y=0 также являются решениями исходного уравне- ния. Поскольку ни при одном значении C 'эти решения нельзя получить из общего интеграла, то эти решения называются особыми.

...

Скачать:   txt (27.4 Kb)   pdf (297.2 Kb)   docx (154.6 Kb)  
Продолжить читать еще 18 страниц(ы) »
Доступно только на Essays.club