Інтеграл Стілтьєса
Автор: Мельник Микита Володимирович • Июнь 1, 2023 • Реферат • 609 Слов (3 Страниц) • 159 Просмотры
Інтегрування у XIX сторіччі в основному пов’язано з теорією тригонометричних рядів. Інтеграл Стілтьєса виник в зовсім новій, нетрадиційній області, а саме в теорії ланцюгових дробів, залишаючись в межах цієї теорії він був частиною мало помітною, специфічним узагальненням інтеграла Рімана. Таким він був близько 15 років. Ф. Пісс в 1910 р. надрукував замітку, змістом якої була формула, яка виражала інтеграл Стілтьєса від неперервної функції f(x) через інтеграл Лебега від деякої сумовної функції другого аргументу.
Лебег пропонує на основі даного ним представлення інтеграла Стілтьєса визначити інтеграл Стілтьєса від розривної функції. У 1914р. Юнг показав, що метод монотонних послідовностей, застосований до інтеграла Стілтьєса, досить просто призводить до того ж узагальнення.
У зв’язку з переходом в простір більшого числа змінних до кінця сформулювалась точка зору на інтеграл, як на функцію множини. Така точка зору стала особливо родючою для теорії і дозволила серед множини визначень виділити таке поняття диференціювання, в термінах якого ця теорія набуває єдиної форми, незалежно від кількості змінних.
Подробно о понятии интеграла Стилтьеса и немного о его развитии описано в книге Гливенко. В.И. «Интеграл Стилтьеса» 1936 г. Автор стремился сделать её доступной к пониманию для аспирантов, студентов-математиков, механиков и физиков. Поставив в особое положение детальное изучение интеграла Стилтьеса, автор ведет нас к глубокому пониманию самих концепций интеграла. Вступление книги начинается со слов: «В 1894 г. Голландский математик Стилтьес дал обобщенное определение интеграла, дальнейшее развитие которого привело к полному преобразованию теории интеграла и вывело ее далеко за пределы классических задач интегрального исчисления». На передний план Гливенко В.И. вынес проблемы решаемые интегралами: проблему измерения площади плоской фигуры – для интеграла Римана, а также проблему нахождения моментов некоторой массы на прямой – для интеграла Стилтьеса. С помощью сумм Д’арбу профессор знакомит нас с понятием интеграла Стилтьеса, определенного при помощи интеграла Римана - в первом параграфе. А в пятом параграфе рекомендует положить в основу определение интеграла как предела сумм. В главе под номером восемь математик стремится ознакомить читателей с определением интеграла Стилтьеса в анализе, при помощи понятия меры. В заключительной
...